

Simulation of Coal Particles in a Full Chemical Looping Combustion System

James Parker CPFD Software, LLC

NETL 2012 Conference on Multiphase Flow Science *Morgantown, WV*

May 22 - 24, 2012

Objectives

- Develop a Chemical Looping Combustion model
 - Full loop, 3D geometry
 - Fluid-particle dynamics
 - Oxidation/reduction chemistry
 - Coal devolatilization, moisture release, gasification reactions
 - Thermal characteristics

Traditional Combustion

Chemical Looping Combustion

Model geometry

- Design provided by NETL for 800 lb/hr circulation of solids carrier
- Approximately 12' tall
- Geometry contains equipment for reactions
 - Air reactor
 - Fuel reactor
- Solids circulation and separation
 - Cyclone
 - Loop seal
 - L-valve

Cold flow model

- Isothermal at 298K
- Non-reacting

Particle Circulation Rate

Modeling CLC Reactions

- Key features
 - Multicomponent particles
 - Particle level chemistry
- Multicomponent particles provide Lagrangian tracking of particle composition
- Particle level chemistry provides a separate domain to each computational particle for reaction calculations
 - Particle composition
 - Particle temperature
 - Particle diameter, area, etc
 - Fluid properties

Ilmenite Carrier

- Primarily consists of
 - ilmenite (FeTiO₃)
 - rutile (TiO₂)
 - hematite (Fe₂O₃)
- d₅₀ of 156 microns
- Oxygen carrying capacity:
 3.3 wt% of oxidized particle weight

Particle Size Distribution

Ilmenite chemistry

Oxidation (exothermic)

$$4\text{FeO} + \text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3$$

Reduction (endothermic)

$$4\text{Fe}_2\text{O}_3 + \text{CH}_4 \rightarrow 8\text{FeO} + \text{CO}_2 + 2\text{H}_2\text{O}$$

$$Fe_2O_3 + H_2 \rightarrow 2FeO + H_2O$$

$$Fe_2O_3 + CO \rightarrow 2FeO + CO_2$$

CLC subset models

- Apply ilmenite chemistry
 - air reactor subset model
 - fuel reactor subset models

Air reactor subset

Ilmenite enters air reactor completely reduced

Percent Oxidation =
$$\frac{w_{\text{Fe}_2\text{O}_3}}{0.307} \times 100$$

 Max Fe₂O₃ on particle: 30.7 wt%

Oxidation level of ilmenite feed

 Ilmenite enters air reactor unoxidized

Temperatures in Air Reactor

Ilmenite enters air reactor
 65% oxidized

Temperatures in Air Reactor

Fuel reactor subset with methane

Temperatures in Fuel Reactor with methane

Time (s)

Coal chemistry

Coal devolatilization

- Temperature-dependent release of <u>methane</u>, <u>carbon dioxide</u>, <u>carbon monoxide</u>, <u>water</u>
- Included particle swelling effects

Coal drying

 Mass transfer limited release of moisture from particle. Equilibrium between solid and gas phase.

Gasification of carbon

- Steam gasification producing <u>carbon monoxide</u>, <u>hydrogen</u>
- CO₂ gasification producing <u>carbon monoxide</u>

Water-gas shift reaction

Ilmenite reduction reactions

Reduction reactions of <u>Methane</u>, <u>Hydrogen</u>, <u>Carbon monoxide</u>

Coal particle properties

 Initial particle density: 1333 kg/m³

- 50 micron 150 micron particle diameter
- Heat of combustion: 32 MJ/kg

<u>Initial coal composition</u>

Component	Composition (wt%)	Density (kg/m³)
Char	51%	2150
Volatile Organics	34%	815
Ash	10%	2200
Moisture	5%	1000

Released Gases

Component	Composition (wt%)
Methane	66.8%
Carbon monoxide	24.4%
Water	5.9%
Carbon dioxide (gas)	2.8223%
Carbon dioxide (trapped)	0.0777%

Coal particle subset model

Full CLC simulation with coal

Apply ilmenite chemistry and coal chemistry to loop

Coal feed is 2.7 lb/hr at 298K

Full CLC loop simulation

Full CLC loop simulation

Particle Circulation Rate

 Simulated circulation rate is close to target rate of 800 lb/hr

Conclusions

- Full reacting chemical looping combustion system was modeled in 3D
- Model highlights
 - Composition of solid ilmenite carrier was tracked on each computational particle in model
 - Oxidation/reduction of ilmenite is modeled using particle level chemistry
 - Coal particles were modeled as a fuel source, including devolatilization, moisture release, and gasification reactions
- Tool for future design and optimization work

Acknowledgements

Justin Weber, Dave Huckaby, Chris Guenther at NETL

This work was supported by NETL

